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We experimentally investigate dispersion from a heated line source placed in the 
central region of a turbulence mixing layer. Recently described by Veeravalli & 
Warhaft (1989) the mixing layer has no mean shear and consists of gradients in the 
velocity variance and scale ; it is formed from a composite grid of constant solidity 
from which two distinct velocity scales are formed, one on either side of the stream. 
Mixing is effected by intermittent turbulent penetration and diffusion. The dispersion 
measurements were carried out in the convective regime where both plume flapping 
and fine-scale turbulent mixing play a role, the latter becoming more dominant as 
the plume evolves. The mean and variance temperature profiles are strongly skewed 
(with larger tails on the low turbulence side of the flow) in the earlier stages of the 
plume development. Here, in the convective range, the median and peak of the mean 
plume are deflected toward the large-scale region. As the flow evolves the profiles 
become more symmet.rica1 but as the plume enters the turbulent diffusive stage there 
is evidence that the profiles again became asymmetric but now with longer tails in 
the high turbulence side of the flow (owing to the higher diffusivity). The temperature 
variance and heat flux budgets are highly asymmetric but tend to exhibit many of 
the characteristics of the budget of a line source in decaying homogeneous grid 
turbulence which is also presented here. However, a distinct region of negative 
production (counter-gradient heat flux) is found in the temperature variance budget 
and this is shown to be a consequence of the asymmetry of the transverse velocity 
probability density function in the mixing layer. Temperature spectra, both of the 
time series and of the intermittency function, across the plume are described. They 
are shown to peak a t  high wavenumbers in the centre and edge of the plume and a t  
lower wavenumbers in the intermediate region. Their form is shown to change as the 
plume develops fine-scale structure and flapping becomes less important. 

1. Introduction 
Predicting mixing and dispersion rates of scalar contaminants in turbulent flows 

remains an  outstanding problem and one of great practical interest because of 
increased environmental emissions (both planned and accidental) and because of 
concern over the design of efficient mixing and combustion devices. In  practice, 
dispersion usually occurs in time dependent inhomogeneous flows (such as the 
atmospheric boundary layer or the internal combustion engine) ; flows that are 
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FIGURE 1.  Sketch of the wind tunnel showing the parallel bar grid consisting of two different mesh 
lengths. M ,  < M ,  (a bipla_nar constant mesh bar grid was also used, see text). Also shown are typical 
mean ( U )  and variance (u') profiles, the position of the line source and the coordinate system. After 
Veeravalli & Warhaft (1989). 

beyond the reach of analytical models or direct numerical solution of the exact 
equations. They are also extremely difficult to measure, be they in the field or 
laboratory, partly because of the large number of parameters that  must be varied to  
make the study comprehensive. Furthermore, detailed measurements of these 
complex flows do not emphasize key concepts or single out particular mechanisms 
because there are so many interacting processes a t  work. Indeed, i t  is an important 
challenge for the experimenter to  investigate flows that are simple (but not trivial) 
so as to clearly elucidate basic mechanisms yet a t  the same time provide insight and 
impetus to the study of practically interesting phenomena such as geophysical and 
industrial mixing and dispersion. 

There is another factor that strongly determines the nature and conduct of the 
modern fluid mechanics experiment. Using large computers, direct numerical 
simulation of turbulent flows is becoming an attractive alternative and may well 
prove cheaper and provide more details than experiments in the future. Yet the 
computationalist must rely heavily on the experimenter in setting up the conditions 
that match those of reality. Possibly, in time, the experiment will assume a more 
exploratory (rather than archival) role, determining the type of flow that the 
computationalist will explore in detail. Yet here too, there are limits, placed on the 
size of the largest computer. Even the most sanguine of computationalists expresses 
doubt about a complete dispersion calculation of say a cubic kilometre of the 
atmospheric boundary layer (with approximately 10l8 grid points) in the foreseeable 
future. I n  spite of rapid advances in both computation and theory, turbulence still 
remains an experimentally based discipline. 

It is such considerations that provided the impetus for the experiment to be 
described here. The flow is the turbulence mixing layer. It is formed in decaying grid 
turbulence in which the mean fluid velocity is constant throughout but two distinct 
scales of turbulence are formed on either side of the stream. In order to study scalar 
dispersion, a thermal line source was inserted a t  the centre of the mixing layer 
(figure 1) .  We have recently completed a detailed study of the velocity field for this 
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flow (Veeravalli & Warhaft 1989, hereinafter referred to as VWt) and in this paper 
we focus on scalar dispersion. As discussed in VW, this flow is of theoretical 
importance because it highlights the interaction of two turbulence-containing scales 
with their energy a t  different wavenumbers. Simple turbulence models are unable to 
predict such a flow and there is a need for experimental insight to aid more complex 
modelling and computer simulations. 

Apart from its fundamental importance the mixing layer is also paradigmatic of 
a number of practical flows. Consider, for example, a turbulent reaction chamber in 
which two reactants, each having a different turbulence scale are co-flowing at the 
same mean speed into the reaction chamber. Here the mixing of the reactants is 
solely determined by the turbulence - turbulence interactions. Or consider a 
turbulent boundary layer evolving in co-flowing turbulence. The outer-edge of the 
boundary layer is almost shearless and thus the interaction of the two scales (one 
determined by the depth of the boundary layer and the other by the free-stream 
turbulence) is again similar in many respects to our experiment. 

The addition of a thermal line source to the flow both aids in an understanding of 
the flow itself (since the thermal field is passive it acts like a dye) and provides needed 
information on scalar mixing. Both the flows of practical interest mentioned above 
invariably involve scalar mixing (indeed the reaction chamber’s sole purpose is to 
mix scalars). We note that even if the velocity field of a turbulent flow can be 
completely described we still have great difficulty in determining the scalar mixing 
characteristics even though the diffusion equation is linear (for the scalar). The 
problem is partly due to the disparate scales of the scalar and velocity fields. 

Stemming from the earlier work of Uberoi & Corrsin (1953) and Townsend (1954) 
there have been a number of recent experiments concerning line- and point-source 
dispersion in turbulent flows. Thus Warhaft (1984) and Stapountzis et aE. (1986) have 
re-examined line-source dispersion, and Nakamura, Sakai & Miyata (1987) have 
studied point-source dispersion, in decaying grid turbulence. Karnik & Tavoularis 
(1989) have investigated line-source dispersion in a uniformlx sheared turbulent flow 
and Fackrell & Robins (1982) have investigated a point source in the turbulent 
boundary layer. Lamb (1982) and Hunt (1982,1985) provide an overview of diffusion 
from sources in these more complex flows. The study to be presented here combines 
some of the characteristics of diffusion in a complex flow like the boundary layer, 
where the velocity variance and scale varies with height, but does not have the added 
complexity of mean shear and in this sense provides a bridge between the experiment 
of Fackrell & Robins and the more simple grid-turbulence experiments mentioned 
above. 

The outline of the paper is as follows. In the next section we describe the governing 
equations for the thermal field (the equations for the velocity field are given in VW). 
In $3  the experimental apparatus is described. Section 4 provides a summary of the 
velocity field and is concerned mainly with those aspects relevant to the scalar 
dispersion problem (for full details of the velocity field see VW). The remainder of the 
paper ($5 )  is on the line-source dispersion. First, new measurements of a line source 
in homogeneous (single scale) grid turbulence are described. These supplement those 

t Gilbert (1980) has also experimentally studied this flow although only in the limiting case in 
which the velocity field is Gaussian and spreading is caused by turbulent diffusion. In VW the 
lengthscale ratio is sufficiently great such that large-scale intermittency as well as turbulent 
diffusion affect the mixing. Thus the velocity field is non-Gaussian having large skewness and 
kurtosis. 



38 8. Veeravalli and Z. Wurhaft 

of Warhaft (1984) and will be used to contrast with those of the mixing layer. In  
particular, new measurements of variance budgets and spectra are presented. Then 
the line source measurements in the mixing layer are described. Initial conditions are 
varied by using two, parallel bar grids (of mesh ratios 3.3: l  and 8.9:1), and a 
perforated plate (VW). The positioning of the line source from the grid is also varied. 
Mean, and r.m.s. profiles, variance budgets and spectra are documentod and related 
to physical models. 

2. The governing equations 
Figure 1 shows a schematic diagram of the experimental set-up and the coordinate 

system used. In the equations below, 0 denotes the excess mean temperature (above 
the ambient), while 0 denotes .temperature fluctuations. The mean velocity field is 
represented by U = (U,  0,O) and the fluctuating velocity by u = (u, z i , ~ ) .  The 
notation x = (2, y, z )  and u = (u, v, w) will be used interchangeably with x = (xl, x2, 
x3) and u = (ul, u2, u3). Assuming constant heat capacity, thermal diffusivity, a, and 
viscosity, v, the governing equation for the mean temperature field is given by: 

Hence, 

ao a.lls a 3  
ax ax ay U-+--+--=a 

( U @ + Z ) d y  = 0, 
dn: 

and therefore, [:-cu(@+g)dy x J, Ody = constant. (3) 

Homogeneity in the z-direction has been assumed in the above equations. 
The evolution of the centre of mass of the mean temperature field 

which is also the location of the median temperature, may be obtained thus : from (1) 
it follows that, 

(assuming $ U 0 )  and hence, 

In homogeneous turbulence, the right-hand side of (5) is zero by symmetry and 
hence, the expected result, Yc = constant = yo, is recovered. However, when the 
turbulence is inhomogeneous, SIz$dy need not be zero and hence the mean 
temperature profile could shift laterally. This is discussed further in $5 below. 

The equation for the temperature variance, @? is: 

advection transport production destruction 
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Each of the terms in (6) tends to zero as y +* co, in both homogeneous and 
inhomogeneous turbulence, while each term is symmetric about the source location, 
yo, only in homogeneous turbulence. 

The budget for the principal component of the heat flux vector, &, is: 

advection transport production pressure 

The molecular smearing term (v+a) (80aw/ax,axj) has been dropped since it is 
negligible a t  high Reynolds numbers (local isotropy of small scales) and hence the 
pressure term is chiefly responsible for the destruction of %. In  homogeneous 
turbulence & is antisymmetric about yo and so are all the other terms in (7). 

3. Apparatus and flow realization 
The experiments were conducted in the same low-speed, vertically oriented wind 

tunnel as used by VW (see also Sirivat & Warhaft 1983). It has a test section 4.25 m 
in length and a cross-section of 0.406x0.406m2. For most of the experiments 
described here, the inhomogeneous velocity field was generated by means of a 
parallel bar grid with a mesh ratio (MJM,) of 3.3: 1. (The subscript ‘ 1 ’ characterizes 
the homogeneous low intensity edge of the inhomogeneous turbulence field, while the 
subscript ‘2  ’ characterizes the homogeneous high intensity edge.) The grid bars were 
square-sectioned of side 3.18 mm and 9.53 mm and the mesh sizes were 9.53 mm and 
31.5 mm respectively, yielding a grid solidity (ratio of the closed area to the total 
area) (T, of 0.32. Two other inhomogeneous grids were also used; ( a )  a parallel bar grid 
of mesh ratio 8.9: 1 and ( b )  a perforated plate with a mesh ratio of 3 : 1 .  All three grids 
are described in detail in VW. The measurements described here were carried under 
exactly the same conditions as in VW ; the velocity fields are documented in that 
paper. In addition, measurements were also made in a homogeneous velocity field, 
generated by a bi-planar grid of mesh size M = 25.0 mm and solidity 0.34. These 
measurements complement those of Warhaft (1984) and both will be compared with 
our measurements for the inhomogeneous velocity field. The mean velocity in all the 
cases was approximately 6 m/s (table 1 ) .  Table 1 documents mesh sizes, solidity and 
flow parameters for all the grids mentioned above. 

To generate the thermal line sources, Constantan wires of diameter 0.076 mm and 
Chrome1 wires of diameter 0.127 mm were used. The source was located either a t  
xo = 31.5 cm or 62.4 cm downstream of the grid. The locations correspond to lOM, and 
19.W2 respectively, based on the mesh size of the 3.3: 1 bar grid. The lateral position 
yo (figure 1) was approximately the inflection point of the kinetic energy profile for 
each of the inhomogeneous velocity fields. For reasons explained below, two different 
source strengths, 19 and 29.5 W/m, were used for the 0.076 mm diameter wire, 
while, the 0.127 mm diameter wire was operated a t  approximately 127 W/m. The 
wires were threaded through small holes in the tunnel walls and wound around spools 
placed outside the tunnel, which were tightened, after heating the wires, in order to  
prevent sagging. The cold-wire Reynolds numbers were 28 and 46, with cor- 
responding hot-wire Reynolds numbers of approximately 21 and 28, thus precluding 
the possibility of vortex shedding (Zdravkovich 1969). The various wire diameters 
and source strengths were necessitated by the conflicting requirements of a large 
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Flow parameters 

MI (cm) 
M2 (cm) 
Solidity u 
Location of the geometric centre (cm) 
Mean velocitv U (m/s) 

Bi-planar 
grid 

2.5 

0.34 

5.9 

- 

- 

9219 
- 
0.061 
0.781 
1.93 
- 

- 
- 
0.38 
- 

260 
- 

51.3 
- 
0.078 
- 
- 

- 

3.3: 1 8.9: 1 
Parallel Parallel 
bar grid bar grid 

0.95 
3.15 
0.32 

18.24 
5.9 

3 505 
11 616 

0.028 
0.365 
1.27 
0.172 
2.31 
3.09 
0.37 
0.36 

115 
677 
33.5 
78.9 
0.076 
0.074 
1.03 
2.43 

0.477 
4.25 
0.29 

5.85 
14.4 

1744 
15539 

0.0091 
0.103 
0.84 
0.222 
2.81 
3.72 
0.38 
0.39 

41.5 
976.5 

18.8 
102.4 

0.088 
0.079 
1.11 
4.43 

3:  1 
Perforated 

plate 

1.12 
3.35 
0.31 

20.04 
5.8 

4060 
12 180 

0.0082 
0.090 
0.80 
0.051 
0.655 
1.78 
0.42 
0.37 

40.3 

21.2 
44.5 

214 

0.091 
0.078 
1.17 
2.23 

TABLE 1 .  Flow parameters for the four grids : k, E and I are the turbulent kinetic energy, dissipation 
rate and integral length scale respectively; R,  and R, are the integral scale and Taylor Reynolds 
numbers based on 1 and the Taylor microscale A respectively; and 7 is the integral timescale. 
Subscript 1 refers to the small-scale homogeneous region, while subscript 2 refers to the large scale 
homogeneous region for the composite grid. For the homogeneous bi-planar grid only subscript 1 
is used. The fluctuation parameters were evaluated at ; (a)  z = 24.96211, (62.4 cm) for the bi-planar 
grid using the decay laws from Warhaft (1984) ; ( b )  z = 19.8 M, (62.4 cm) for the 3.3: 1 bar grid ; (c) 
z = 14.6W2 (62.4 cm) for the 8.9: 1 bar grid; and (d) z = 19.4M2 (65 cm) for the perforated plate. 
(As noted in VW, the decay laws for the 8.9: 1 bar grid could not be measured and thus the values 
reported here for the 8.9: 1 bar grid are less accurate than those for the other grids.) 

temperature signal and negligible disturbance of the velocity field. The mean velocity 
in the wake of the wire requires about 250 diameters to recover t o  within 99 % of the 
free-stream value (Kellogg & Corrsin 1980), hence the fine wire, maintained a t  a 
strength of 29.5 W/m, was used for measurements close to the source (x' < 4MJ. The 
evolution a t  larger x' was obtained using the thicker wire a t  a strength of 127 W/m. 
As shown below, data obtained with the different wire diameters and source 
strengths agree well with each other. 

Temperature fluctuations were measured with a 1.27pm platinum wire with a 
length-to-diameter ratio L I D  x 400, used in conjunction with an  a.c. temperature 
bridge with a frequency response of 2.5 kHz. The probe current was approximately 
0.6mA. The prong spacing was greater than 3L thus alleviating the problem of 
probe-prong interaction. The temperature wire was calibrated using a 76.2 pm 
diameter Chromel-Constantan thermocouple. The probe arrangement was similar to 
the one described in Warhaft (1984), with the temperature wire positioned parallel 
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FIQURE 2. The normalized mean (@/emax) and r.m.s. ((@)t/@max) temperature profiles a t  2’ = 
6.4 cm (zo = 62.4 cm) for the 3.3: 1 bar grid. and *; mean profiles for the fine wire with low 
heating (0.0762 mm, 19 W/m) and thick wire with high heating (0.127 mm, 127 W/m) respectively. 
0 and *; r.m.s. profiles for the fine and thick wire respectively. 

to the line source in order to resolve accurately temperature moment profiles close to 
the source. The velocity field was measurqd using conventional X-hot wires in 
conjunction with Dantec 55M01 constant temperature bridges. The wires were made 
of tungsten with a diameter of 3.05pm and a length to diameter ratio, LID,  of 
approximately 200. The hot wires were operated at an overheat ratio of 1.8. The 
velocity signals were band-pass filtered with Khronhite 3342 filters prior to 
digitization, however, the temperature signal was only low-pass filtered in order to 
accurately resolve the regions of sharp transition from the ambient to plume 
temperature. The calibration procedure for inclined wires, outlined by Champagne & 
Sleicher (1967) and Champagne, Sleicher & Wehrmann (1967) was modified to 
compensate for temperature contamination of the hot-wire data. This correction is 
essential especially when estimating correlations of u and 0 (Perry 1982). The 
calibration scheme worked very well far away from the source (2’ 2 lQM,). However, 
close to  the source, when the instantaneous plume width is comparable to the spacing 
between X and temperature wires (approximately 1.4mm in our case), it is not 
possible to compensate for temperature contamination because the X and 
temperature wires could be in different regions of the instantaneous thermal plume. 
Hence, for the heat flux measurements close to the heated wire (x’ /xo  < 0.2) a very 
low source strength (19 W/m) was chosen in order to  minimize contamination of the 
velocity data. For this low heating, accurate measurements of v could be obtained 
even without temperature compensation and since the velocity field is essentially 
identical a t  the X and temperature wires, their spacing being comparable to the 
Kolmogorov scale, accurate estimates of v - 0 correlations could be obtained. The 
data analysis procedure is outlined in VW. Here we add that 100 blocks of data 
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consisting of 1024 and 2048 points were used for variance and spectra calculat,ions 
respectively. 

Figure 2 shows normalized mean and r.m.s. temperature profiles a t  x' = 6.4cm 
(xo = 62.4 cm) for the 3.3: 1 bar grid, obtained for the fine wire maintained at a source 
strength of 19 W/m and the thick wire operated a t  a strength of 127 W/m. The two 
mean profiles show very good agreement. The profile is marginally wider for the 
higher intensity source due to both the larger initial size and higher thermal 
diffusivity. The widths of the r.m.s. profiles also agree well with each other, however, 
the peak values differ by about 15%. This behaviour is consistent with the 
measurements of Warhaft (1984) and Stapountzis et al. (1986). We note that further 
from the source the agreement between the two cases improves, as the influence of 
the initial conditions diminishes. This is evident from figures 13 and 15 below (see 
$5.2). 

4. The velocity field 
The thermal dispersion measurements to  be described here were carried out in 

homogeneous grid turbulence and in the shearless turbulence mixing layer. The 
velocity field for both the flows have been previously measured, the former by 
Warhaft (1984) and the latter by VW. In this section we document the salient 
features of these velocity fields. For further details the reader is referred to the above 
mentioned papers. 

4.1. The homogeneous velocity field 

New measurements of the velocity field for this case were not made, however, a t  the 
locations where the temperature field was measured, the data were found to be in 
very good agreement with the measurements of Warhaft (1984), who used the same 
grid (2.5 cm bi-planar) but a slightly larger mean velocity. The values of 2 agreed 
to within 3 YO with those estimated from the decay law reported in Warhaft (1984), 
while, 2 agreed to within 6%.  Thus in order to facilitate comparison with the 
extensive measurements of Warhaft (1984), we will use his decay laws which are : 

- - 
-1.32 212 -1.4 U 2  

- u2 = 0.121(g) ' u 2  -- - 0.076(;) . 

We note that variance measurements in flows such as this do not reproduce 
themselves to  better than 5% accuracy. 

The parameters describing the velocity field are presented in table 1. 

4.2. The turbulence mixing layer 

The velocity field produced by the 3.3: 1 parallel bar grid consists of two regions of 
homogeneous turbulence of different intensities, separated by a mixing layer. 
However, the spacing between the grid bars is adjusted so as to produce a uniform 
pressure drop across the grid _ _  and hence the mean velocity field is constant across the 
entire flow (VW). Profiles o f u 2 ,  v2 and 3 for the 3.3: 1 parallel bar grid are shown in 
figure 3. The measurements were made a t  x = 21.2M2 (66.7 em). The arrows on the 
figure refer to the inflection points of variance profiles ( Iu ,  I v  and I w ) ,  and the 
geometric centre (position where the grid changes from one mesh size to the other) 
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FIGURE 3. Profiles of u2, v2 and 2 for the 3.3: 1 parallel bar grid a G  21.2&fL(66.7 cm from the 
grid). Arrows marked I , ,  I" and I ,  refer to inflection points of the u2, v2, and w2, profiles and C is 
the geometrical centre of the grid (position where mesh size changes). 0 ,  3;  A, 7 ;  x , w2. 

- 

of the grid, C. The decay laws for the velocity variances in the two homogeneous 
regions (one on either side of the mixing layer) are (VW): 

- 
-1.33 - -1.2B 

= 0.167($-) , 

- v " =0.130(:) , %=0.303(&) u2 , 

- _  W? u2 - 0,251 (G) "~~ o.zSz(;) , 

- - 
-1.30 -1.51 

- - 
-1.53 

-1.39 k = 0.268(e)  
u2 ( 9 4  

In the equations above k refers to the turbulent kinetic energy &;;l"+a+G). The 
subscripts 1 and 2 refer to the high and low intensity sides of thc mixing layer 
respectively. These results are the same as in VW since the thermd line source was 
placed in the same velocity field as that described in VW. I n  fact, some of the velocity 
field data presented in VW, were obtained from the joint velocity temperature 
measurements made with the line source present. 

As shown in VW the v fluctuations form the primary mode of transport in the 
turbulence mixing - -  layer. Figure 4 ( a )  shows the variation of the skewness (normalized 
third moment v3/(v2);) of v fluctuations, X,, a t  x = 21.2M2 (66.7 cm). We see that S; 
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FIQURE 4. The skewness (a) and p.d.f. (b) of the transverse velocity, w, at z = 21.2M2 (66.7 cm), 

y = yo for the 3.3: 1 parallel bar grid. 

is essentially zero in the homogeneous edges of the mixing layer. However, within the 
mixing layer 8, attains large negative values. This is because, within the mixing 
layer, fluctuations arising from the large-scale side are more likely to be negative and 
hence large deviations of the fluctuating v component from its mean, are more likely 
to be negative. Figure 4 ( b )  shows the probability density function of v fluctuations, 
fv(v ' ) ,  obtained a t  2 = 21.2M2 (66.7 cm) and y = yo (note that this is approximately a t  
the location of the line source placed at z,, = 19.W2 and directly downstream of the 
one placed a t  xo = lOM,). The asymmetry discussed above is clearly evident 'in the 
p.d.f. and it shows a significantly longer negative tail. This asymmetry of the velocity 
fluctuations has a profound effect on the mixing of the thermal plume in the 
turbulent convective region as is shown in 35.2 below. Turbulence parameters for this 
flow as well as those of the 8.9: l  parallel bar grid and the perforated plate, are 
documented in table 1. 

5. The thermal line source dispersion 
5.1. Dispersion from the line source in homogeneous turbulence 

The evolution of a line source in homogeneous turbulence has been studied rather 
extensively, both experimentally and theoretically since the classical works of Taylor 
(1921, 1935) ; the most recent experiments having been carried out by Warhaft (1984) 
and Stapountzis et al. (1986). When the thermal source size is smaller than the 
Kolmogorov lengthscale, the evolution shows three distinct stages (Warhaft 1984 ; 
Anand & Pope 1983): molecular diffusive ( t  -4 a / 7 )  wherein the plume width 
increases as t i ;  turbulent-convective ( a / 3  -4 t < t ,  where t ,  is the Lagrangian 
timescale) where the width increases linearly with t ,  and turbulent-diffusive ( t  9 t ,) 
where the plume width increases as tl- in, where n is the decay exponent of 2. We will 
present new measurements of the temperature variance budgets and spectra, 
obtained in the turbulent-convective range, which, to the best of our knowledge have 
not previously been documented in the literature. They will serve as a reference for 
similar measurements carried out in the inhomogeneous mixing layer to be described 
below. 
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Homogeneous biplanar grid ; M = 2.5 cm. 

5.1.1. The temperature moments 

Figure 5(a ,b )  shows mean and r.m.s. temperature profiles a t  different non- 
dimensional distances (x’lx,) from the source. The data in figure 5 (a) were obtained 
with x,, = 62.4 ern and x f  = 6.4 em, yielding a non-dimensional distance x f / x o  = 0.10, 
while the data in figure 5 ( b )  pertain to an 5, of 31.5 cm and an zf of 38 ern yielding 
x’ /xo  = 1.21. The r.m.s. profiles have been normalized by the respective maximum 
mean temperatures, Om,, (the same as the centreline temperature here). The source 
strengths were 19 W/m and 127 W/m respectively. The curves shown in the figures 
for the mean temperature profiles are best fit (least squares) Gaussian profiles; they 
represent the data extremely well. The variance profiles are single peaked, however, 
the peak (especially in the case of x’/xo = 1.21) is very flat indicating that the 
locations are close to the regions where double peaks may be observed. Double peaks 
are observed in the very early stages of the turbulent convective regime and in the 
final stages of evolution, when the instantaneous plume is comparable in width to the 
mean plume (Warhaft 1984; Lumley & Van Cruyningen 1985). Our data sets (see 
below) are not in these regions. 

Anand & Pope (1983) and Warhaft (1984) showed that data obtained at! various 
x / M  and for different x,, could be collapsed onto a single curve when plotted as l;/l, 
us. x f /xo  for both the temperature mean and variance. Here 1; is defined, in the usual 
way, as the lateral distance from the centre to a point whose ordinate is half that of 
the point on the centre line, and I, is the turbulence lengthscale defined as ( z ) % / s  at 
the source. Figure 6 shows data obtained in the present study plotted alongside those 
of Warhaft (1984). The agreement is very good and this is not surprising for the 
turbulence field was generated with the same grid in both the experiments, although 
the mean velocities were slightly different. The normalized centreline intensity (c);/gmax also agreed to within a few percent with the measurements of Warhaft 
(1984). Note that the first station lies in the middle of the turbulent-convective 
region while the second measurement station lies in the transition region between the 
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FIGURE 6. Kormalized half-width of the mean temperature profiles (left-hand curve) and r.m.s. 
temperature profiles (right-hand curve) for the biplanar 2.5 cm grid. The open circles with the cross, 
0,  are the data for the present experiments. The other symbols are for the various source locations 
used by Warhaft (1984, figure 10) from which this figure is taken. 

turbulent-convective and turbulent-diffusive regimes, thus the double peaks 
discussed above are not observed here. 

5.1.2. The temperature spectra 
One-dimensional temperature power spectra Foo(~l) were estimated from the time 

series using Taylor’s frozen flow hypothesis. Spectra were obtained at various lateral 
positions at the two downstream locations discussed above, namely x = 68.8 em, 
x’/xo = 0.lOand x = 69.5 cm, x‘/xo = 1.21 and these are shown in figures 7 (a)  and 7 ( b )  
respectively. The spectra are accurate up to 2.5 kHz ( K ~  - 2500 m-l) beyond which 
the sensor sensitivity begins to roll off. In  grid turbulence, typically, the dissipation 
spectrum peaks a t  approximately 307 (q  is the Kolmogorov microscale) and has a 
negligible contribution from scales smaller than 67 (see for example Warhaft & 
Lumley 1978). Here, since the Prandtl number is approximately 0.7 and 7 is 
3 x lop4 m, the bandwidth of the temperature sensor is large enough to resolve all the 
dynamically important scales. 

The spectra shown in figure 7 (a ,  b )  are one-sided, hence, 

JOw FoH dK1 = e?. 

In  each case the lateral positions have been chosen so as to span one half of the mean 
temperature profile (y’ = 0 to y‘ x -31;). For clarity each of the spectra has been 
shifted down by half a decade with respect to the one above it. The spectra obtained 
at x’/xo = 0.10 are wider than those a t  x ’ / x o  = 1.21, as expected from the smaller 
mean and instantaneous plume widths a t  x’/xo = 0.10, (The velocity field is nearly 
identical in both the cases.) 

Figure 8 (a ,  b )  shows plots of K~ Fos(~l)/B?, a t  the same locations as in figure 7 (a ,  b ) .  
The spectra were fitted with a tenth-order polynomial in log-log space prior to 
scaling by K ~ .  The origin of the ordinate has been shifted down by 0.1 successively for 
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FIGURE 7 .  One-dimensional spectra of temperature fluctuations as a function of lateral position in 
the plume for the 2.5 cm biplanar homogeneous grid. ( a )  x = 68.8 cm, x'/zo = 0.1. ( b )  z = 69.5 cm, 
x ' /xo  = 1.21. The spectra span one side of the mean plume which is symmetric, their lateral position 
is shown on the graph. Each spectrum has been shifted down by a half a decade with respect to the 
one above it for clarity. 

1 10 10' loa 10' 

K1 (m-I) 

-0.8 
loo 101 loz 103 104 

KI @-*I 
FIGURE 8. The normalized temperature spectra of figure 7 multiplied by K ~ .  The arrows indicate the 
location of the peaks. For clarity the origin of the ordinate has been shifted down by 0.1 
successively. ( a )  x'/xo = 0.1; ( b )  x'/xo = 1.21. 
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FIGURE 9. (a) The wavenumber at which the temperature spectra peak as a function of lateral 
distance across the plume for the homogeneous bi-planar grid. The peaks of the unconditioned 
spectra are taken from figure 8. 0 ,  unconditioned spectrum at x' / zo  = 0.1; A, conditioned (or 
intermittency) spectrum at x'/xo = 0.1 ; *, unconditioned spectrum at x'/xo = 1.21 ; 0, conditioned 
spectrum a t  x'/xo = 1.21. (b) The (inverse) integral lengthscale (Z;l) across the plume determined 
from the relation e8/((u2):@; 0,  x' / zo  = 0.1; A, x'/xo = 1.21. The lateral distance y' in both (a) 
and (b) has been normalized by the plume half-width. 

clarity. The arrows shown in the figures mark the locations of the peaks of the 
spectra. The peak wavenumber, K ~ ,  may be viewed as an approximate measure of the 
inverse of the thermal lengthscale I, .  Proceeding from the centre to the edge of the 
plume, the location of the peak is seen first to shift to lower wavenumbers and then 
rise once more, a t  both values of x'/xo. The locations of the peaks of the spectra in 
figure 8(a ,b)  are shown in figure 9(a) .  (The figure uses data spanning the full mean 
plume and not just one half.) Also shown in the figure are similar peaks obtained from 
the spectrum of the intermittency function, F,-(K~). The intermittency function r(t), 
was obtained from the time series by assigning a value of 1 to points with an 
instantaneous temperature excess (over the ambient temperature) greater than 4a,. 
((r, is the r.m.s. of noise fluctuations, obtained from measurements in cold air.) As 
pointed out by Chatwin & Sullivan (1989), such a definition for r(t) is not rigorous 
and quantitative information obtained therefrom should be treated with caution as 
it is very sensitive to the choice of the threshold (in this case 4a,), however, given 
the qualitative nature of the discussion to follow, it is quite adequate. 

At the centre (of the mean plume) the instantaneous plume is present most of the 
time, while, at  the edge (of the mean plume) the instantaneous plume is absent most 
of the time. Hence in both these regions the intermittency function undergoes rapid 
changes of the type one-zero-one at the centre and zero-one-zero near the edge. Thus, 
the K~IT,-(KJ spectrum has a high wavenumber peak arising from these rapid changes. 
In the intermediate region the instantaneous plume is present or absent for more 
equal lengths of time and transitions in r(t) are not so rapid, hence the peak of 
K,F,-(K~), K;, shifts to lower wavenumbers. Thus K; behaves as shown in figure 9(a) .  

Variations in temperature observed at any position, arise from the internal 
structure and jiggling (small excursions of high frequency caused by the fine-scale 
structure of the velocity field) of the instantaneous plume and from the flapping 
motion caused by the large-scale velocity fluctuations. Hence the overall spectrum 
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FKGURE 10. An attempt to collapse the data of figure 8(a) .  

may be viewed as a convolution of the ‘plume ’ spectrum and the ‘flapping ’ spectrum, 
F‘(K~) (cf. Fackrell & Robins 1982). For d / x 0  = 0.10 we see that the behaviour of K~ 

closely mimics that of K;, though it occurs a t  much larger wavenumbers, because 
the instantaneous plume width is small compared to  the convective lengthscale 
(crp/(3)it x 0.4, gP is the standard deviation of the Gaussian distribution representing 
the instantaneous plume). The correspondence is less pronounced for the data at 
x‘/zo = 1.21. For this case, in the central region of the mean plume, the intermittency 
function suggests that  K~ should occur at much higher wavenumbers than observed. 
The reason for this anomaly is that  the temperature signal here exhibits 
intermittency due to  both bulk flapping of the plume and due to  the presence of 
pockets of cold air in the instantaneous plume. At d /x0  = 0.10, the instantaneous 
plume has very little internal structure and hence the intcrmittency arises due to 
flapping only. Further downstream, when the plume is in the turbulent diffusive 
phase, flapping ceases to play a role in the central region of the mean plume and thus 
the peak wavenumber of the overall spectrum should become independent of lateral 
position in this region, which is consistent with the behaviour exhibited by the data 
in figure 9(a). It is unclear, however, why the conditioned profile still shows a sharp 
peak in the centre. 

Figure 9 (b)  shows the inverse thermal lengthscale Z;l determined as .~~/(;;l”)ip, 
plotted as a function of y’/l;, a t  x’/zo = 0.10 and x‘/xo = 1.21. The data have the 
same qualitative features as the plots of K ~ ,  the inverse thermal lengthscale 
determined from the spectrum, shown in figure 9(a ) .  Thus there is a peak at the 
centre and a minimum on either side of the centre which occurs at approximately the 
same location as in figure 9(a). However, for z’/xo = 1.21, the overall variation of 
Zgl (figure 9b)  is less than that of K~ (figure 9a) and the peak at the centre is relatively 
broader. This difference may be due to  the fact that the form of the spectrum changes 
as the plume is traversed (i.e. they are not self-similar, as is discussed in the next 
paragraph) and thus the peak of the spectrum is not a perfectly conditioned estimate 
of the thermal lengthscale. Nevertheless the correspondence between K~ and 2 i 1  is 
remarkably good. 

Figure 10 shows an attempt to collapse the data in figure 8 ( a ) .  The lack of 
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FIGURE 1 1 .  The temperature variance budget (equation (6)) for the line source in the homogeneous 
grid turbulence. The ordinate values have been normalized by (@$, U)/x ‘ .  The labels indicated in 
the figure are : A ,  normalized advection ; P ,  normalized production ; T, normalized transport and 
D, normalized destruction. (a) x ‘ / x ,  = 0.10; zo = 62.4 cm. (b) x’/xo = 1.21. xo = 31.5 cm. 

Y’l4 Y’l4 

similarity mentioned above between the spectra a t  different lateral positions is 
clearly evident in these figures. Proceeding from the centre to  t’he edge we see first 
a tendency for the low wavenumber region to be relatively enhanced, however, 
further away the spectra revert to that at the centreline ; the spectrum obtained a t  
yf  = -2.411; collapses well onto the centreline spectrum. As mentioned above, the 
overall spectrum may be viewed as a convolution of the ‘plume’ spectrum and the 
‘flapping spectrum’. Hence, since the ‘flapping’ spectrum is similar in the centre and 
the edge of the mean plume, the overall spectra are similar in these regions too. A 
similar comparison for the data in figure 8 (b )  (not shown) indicates that the spectra 
a t  the edge do not resemble the centreline spectrum as well. The dependence of the 
spectra on the lateral coordinate y’, is examined in greater detail in the discussion for 
the inhomogeneous turbulence field below. 

5.1.3. The temperature variance budget 
The temperature variance budget (equation (6)) has been discussed in 92. Figure 
11 (a,  b )  shows a balance between various terms described in equation (6) obtained a t  
x f / x o  = 0.10 and d / x o  = 1.21, respectively. The ordinates of the curves have been 
normalized by @hax U / x f  and the abscissae have been non-dimensionalized by l;, 

The production and transport terms were obtained by fairing a smoot,h curve 
through the data points (d.ata for 0, &, and 8%) using Bezier splines, prior to  
numerical differentiation using a 5-point window. No symmetry condition was 
imposed on the curve-fit and it is quite reassuring that the curves exhibit a high 
degree of symmetry about the origin. The destruction term, eo, was obtained by two 
different methods. I n  the first method eo was obtained by differentiating the time 
series and invoking local isotropy and Taylor’s frozen flow hypothesis, i.e. 

- 
- 3a ae ae 
u2 atat . Ef? = -- 
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Equivalently, eo was evaluated from the one-sided temperature spectrum F o o ( ~ J  as 

- 127C2a Jn K?F,, dK1 
W 

(a seventh-order polynomial was fit to the spectra in log-log space prior to 
integration). In  both cases the contribution from background noise was subtracted 
out on a mean-square basis. The two methods agreed to within lo%, however, the 
values of eo shown in figure l l(a,b) were obtained by the spectral method. 
Differentiation via spectra is more accurate and furthermore it is possible to extend 
the curves fit to the spectra to wavenumbers beyond the high-frequency cut-off of the 
temperature sensor and thus it is possible to  partly account for the unresolved scales 
(this resulted in approximately a 3% increase in the estimate for G,,,). The advection 
term was not measured but obtained as the difference of the other terms in the budget. 
The accuracy of such a method of obtaining the advection term is discussed in 
Appendix A. 

We see from figure 11 ( a )  that in the central region of the plume, the production 
and transport terms are approximately equal in magnitude (but opposite in sign), 
while advection balances destruction. At the outer edges of the plume, however, the 
production and destruction terms rapidly approach zero and advection and transport 
balance each other. 

The curves shown in figure 11 ( b )  show the same qualitative behaviour as those in 
figure l l ( a ) .  Here, too, the advection term balances the destruction term in the 
central region of the plume while i t  balances the transport term in the outer regions. 
However, the relative importance of the terms viewed across the whole plume is very 
different. The peaks of the non-dimensional production and transport terms are 
lower a t  x’/xo = 1.21 when compared with those at x’/xo = 0.10, while the peak of the 
destruction term is larger by approximately 50 %. Hence, while the peaks of all four 
terms are approximately equal at x’/xo = 0.10, the destruction peak (and hence the 
advection peak) is almost twice as large as those of the production and transport 
peaks, at d / x o  = 1.21. 

We note that when x ’ / x o  = 0.10, the plume is a t  the centre of the turbulent- 
convective regime, while, when x’/xo = 1.21, it is in the transition region between the 
turbulent-convective and turbulent-diffusive phases (figure 6). Mixing is most 
vigorous in the turbulent-convective region, evidenced by the rapid growth of the 
half-width in this regime, hence the transport term diminishes in importance when 
z’/xn is increased from 0.10 to  1.21. For the same reason the relative magnitude of the 
heat flux ?% decreases, however, the change in the production term is not so 
pronounced because the mean temperature gradient remains unchanged with our 
choice of scaling parameters. The destruction term (and consequently the advection 
term) shows by far the greatest change and this can be understood as follows. Close 
to the source, the instantaneous plume has very little internal structure since there 
is little turbulent act’ivity in scales smaller than the plume width and hence the major 
contribution to the destruction term comes from the edge regions of the instantaneous 
plume where the temperature gradients are large. Further away from the source the 
plume develops internal structure and patches of cold fluid are interspersed with hot 
patches (Stapountzis et al. 1986). Hence the volume over which large gradients exist, 
increases with distance from the source, resulting in a larger non-dimensional 
destruction term. 

The measurements presented here are in rough qualitative agreement with those 
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of Freymuth & Uberoi (1971) for flow around a heated cylinder and Freymuth & 
Uberoi (1973) for flow around a heated sphere. I n  those experiments too, advection 
balanced destruction in the central region of the thermal field, while it balanced 
transport in the outer regions, However, the details of the budget are quite different 
from those presented here because the velocity fields are dissimilar. 

5.2. Dispersion frm the line source in the inhomogeneous velocity field 

As discussed in 55.1, the development of the thermal plume consists of three stages: 
(a )  molecular diffusive ; ( b )  turbulent convective and ( c )  turbulent diffusive. The 
development of the plume in the molecular diffusion phase is identical in both 
homogeneous and inhomogeneous turbulence fields. Thus no attempt was made here 
to duplicate the results of Warhaft (1984) where this regime was studied in some 
detail for a homogeneous velocity field. The measurements of the thermal field here 
span the entire turbulent-convective range, however, because of the growth of the 
boundary layers on the tunnel walls and the development of irregularities in the 
velocity field (VW), they could be extended only to the beginning of the turbulent 
diffusive range. Unless otherwise specified, for the thermal field described below, the 
inhomogeneous turbulence field was generated using the 3.3: 1 parallel bar grid. 

5.2.1. The moments of the temperature field 

Mean temperature profiles obtained at various distances from the source are shown 
in figure 12 (x, = 31.5 cm, yo = 17.53 cm). The curves have been normalized by their 
respective peak mean temperature, Om,,, while the lateral spread has been centred 
about the location of the line source, yo, and normalized by the half width 1;. In  a 
manner analogous to that for symmetric profiles, the half width has been defined as 
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half the separation between points at a mean temperature equal to 0.50,,,. The 
values of Omax and 1; for various x‘/xn are documented in table 2. For the 
measurements up to x’/xo = 0.4, the 0.076 mm diameter wire, a t  a strength of 
29.5 W/m was used to generate the thermal source while, beyond x’/xn = 0.4, the 
0.127 mm diameter wire a t  a strength of 127 W/m was used. 

We note that close to the source the profiles are highly asymmetric with a larger 
spread on the small-scale side and a smaller spread on the large-scale side. Far away 
from the source. (the largest x’/xo shown), however, the profile is nearly symmetric 
about the peak, Close to the source (but beyond the molecular diffusive regime), 
spreading is primarily due to the flapping of the instantaneous plume by the 
fluctuating transverse velocity, v. As shown in $4 (see also VW), the v fluctuations 
in the mixing layer are highly skewed, with fluctuations originating from the large- 
scale homogeneous region of the mixing layer being predominantly negative, and 
fluctuations originating from the small-scale homogeneous region being pre- 
dominantly positive. Hence, large excursions of the instantaneous plume from its 
mean location, caused by the large-scale fluctuations, are directed towards the small- 
scale region and conversely, the excursions towards the large-scale region are much 
smaller. Consequently, the mean temperature profile has a larger spread on the small- 
scale side than on the large-scale side. Owing to this asymmetric mixing the 
maximum and median temperature locations are deflected into the region of y’ > 0 
(see also Hunt 1985) and the magnitude of this deflection increases with x’ within the 
turbulent-convective regime. (Note, however, that  l; increases also and thus, in figure 
12, the peak temperature location appears to move closer to the origin yo as x’ 
increases.) When the width of the mean plume becomes comparable with the 
turbulence integral lengthscale, turbulent diffusion begins to play a role in the 
mixing and the plume starts to spread faster on the large-scale side because of the 
larger eddy diffusivity there. At x’/xo = 2.91 the two effects are approximately in 
balance and the mean temperature is nearly symmetric. Beyond this location, when 
turbulent diffusion becomes the dominant spreading mechanism one would expect to 
see asymmetric profiles once more but with a larger spread on the large-scale side of 
the mixing layer. 

Figure 13(a) shows iso-fraction lines (i.e. loci of points satisfying 0/0,,, = 
const.), obtained from the data presented in figure 12. The transverse motion of the 
peak temperature has been subtracted out in this figure. We note that although the 
data were obtained from sources of two different strengths and initial sizes, the 
curves are smooth and match well a t  x’/xo = 0.4 where the thermal field produced by 
the small intensity source is replaced by that of the higher intensity source ($2). A 
similar procedure was used by Warhaft (1984). 

The asymmetry of the mean temperature profiles close to the source and the 
tendency towards symmetry far away from it are clearly evident in this figure. 
Extrapolation of the iso-fraction lines beyond the measurement region suggests that 
the mean temperature profiles would indeed become asymmetric once again, with a 
larger spread on the large-scale side, as expected. Let us define the one-sided half- 
widths as follows : 

1,& = distance from the peak to a point a t  0.50,,,, lying to the right of the peak; 
1;.5 = distance from the peak to a point at 0.50,,,, lying to the left of the peak. 

Similarly , 
l:.2 = distance from the peak to a point a t  0.20,,,, lying to the right of the peak; 
1;,2 = distance from the peak to a point a t  0.20,,,, lying to the left of the peak. 
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FIQURE 13. (a )  Iso-fraction lines (@/@,,, = const.) for the profiles of figure 12. The transverse 
motion of the peak has been subtracted out. The ordinate has been normalized by the large-scale 
turbulence integral lengthscale at the source (table 1). The labels (0.1,0.3, etc.) refer to the fraction 
value with respect to the peak. ( b )  Variation of the asymmetry parameters (see text and table 2) 
0, l;,5/l:,5; 0,  l ;J l&; x , the ratio of the peak r.m.5. temperature to the mean temperature 
maximum. Grid and source location for (a) and (b)  are the same as in figure 12. 

The ratios 1i5/& and l;,2/li2 could then be used to quantify the asymmetry of the 
mean temperature profiles. The downstream evolution of these ratios is shown in 
figure 13(b). We note that when the ratios are larger than unity, l;.2/li.2 is always 
larger than 1i5/li5. Both the profiles show a region of growth (both ratios should be 
unity initially) and then decay to a value of 1 at the end of the turbulent convective 
regime. As reported in table 2, the peak value of l;,5/li.5 is approximately 1.7, while 
that of l;,2/li.2 is close to 2. The data suggest that the approach to unity a t  large x' /xo  
is not asymptotic indicating that the ratios would be less than unity in the turbulent 
diffusive range as discussed above. 

Temperature variance, 2, profiles obtained at  various downstream locations are 
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FIGURE 14. Temperature variance profiles for the 3.3: 1 bar grid with source a t  zo = 31.5 cm. 
Symbols are for the same locations as figure 12. 

shown in figure 14. Om,, and 1; obtained from the mean temperature data, have been 
used to normalize these curves also. The asymmetry is even more marked here than 
in the 8 profiles (figure 12) and the tendency towards symmetry is slower. We could 
define one-sided half-widths for the vwiance profiles, Zz5 and Z& in the same way as 

above. Table 2 documents the ratios lh;5/lz a t  various x’/xo. The peak 
value of Zh;5/lh: is approximately 2.35. The ratio is not properly defined a t  large x’/xo 
since the variance profiles begin to exhibit double peaks. As mentioned in $5.1, 
aouble peaks are expected in the variance profiles far from the source when the width 
of the instantaneous plume becomes large compared to the flapping lengthscale 
(Warhaft 1984; Lumley & Van Cruyningen 1985). 

Figure 13 ( b )  also shows the development of the ratio (=);/Omax. Its  peak value 
is approximately 1.4 in the region close to the source and it asymptotes to a value 
of approximately 1.0. This behaviour is consistent with that observed by Warhaft 
(1984). 

The evolution of the half widths of the 0 and @ profiles is shown in figure 15(a). 
The half widths have been normalized by I , , ,  the integral lengthscale of the high 
turbulence region, obtained at 2,. Both the half widths display a nearly linear growth 

and xo.82 respectively) indicating that the plume is in the turbulent-convective 
regime. 

Figure 15 ( b )  shows the evolution of the location of the mean temperature peak, Yp, 
and the location of the centre of mass of the mean temperature profile 

and 

For a symmetric profile Yp should equal Y,, and the greater the difference between Yp 
and K ,  the greater the asymmetry. I n  addition, it can be shown that when flapping 
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FIGURE 15. (a )  Evolution of the half width of the mean (0 )  and variance (A) of the temperature 
profiles normalized by Z,,, the integral lengthscale of the high-turbulence region obtained a t  the 
source. (The graph of the variance has been shifted up a decade for clarity.) (b)  Evolution of the 
transverse location of the mean temperature peak, q, 0, and centre of mass, x, (median) of the 
mean temperature profile A, for the profiles of figures 12. ( c )  Pjormalized transverse heat flux as 
a function of y at z’/zo = 1.21. 

is the sole mixing mechanism, dY,/dx must be zero if the instantaneous plume is 
symmetric about its peak. The transport equation for is given by equation (5) ($2). 
An examination of the data a t  x‘/xo = 0.85 and x’/xo = 1.21 shows that the integral 
of the 8 profile (figure 15c) is non-zero and thus indicates a positive value for dY,/dx 
and accounts for approximately 60% of its magnitude. At both these locations 
dY,/dx is approximately 1.1  x while the term on the right-hand side of equation 
(5) is approximately 7.1 x 

5.2.2. The temperature spectra 

Figure 16 (a, b )  shows normalized one-dimensional temperature power spectra 
F o o ( K l ) / ~  for the 3.3: 1 bar grid, obtained a t  x’/xo = 0.10 (xo = 68.4 em) and a t  
x‘/xo = 1.12 (x, = 31.5 cm) respectively. For clarity each spectrum has been shifted 
down by a decade with respect to the one above it. The spectra obtained at 
x’/xo = 0.10 are broader than those a t  x’/x, = 1.12 because the mean and 
instantaneous plume widths are smaller close to the source (cf. $5.1.2). At both 

at x’/xo = 0.85 and 6.5 x at x’/x,, = 1.21. 
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FIGURE 16. Kormalized one-dimensional temperature spectra as a function of lateral position for 
the 3.3: 1 parallel bar grid. Each spectrum has been shifted down by a decade with respect to the 
one above it for clarity. (a) xo = 62.4 cm, x‘ /xo  = 0.10 and (b)  xo = 31.5 cm x’ /xo  = 1.12. 

downstream locations, proceeding from one edge of the mean plume to  the other, the 
spectra are first seen to  develop a low wavenumber hump, which disappears near the 
central region, reappears again and is absent once more a t  the other edge. This 
behaviour is similar to  that observed for the line source in homogeneous turbulence 
($5.1.2). Figure 17(a, b )  shows plots of K ~ F ~ & K ~ ) / B ? ~  for the same data as figure 16. 
Each spectrum in figure 17(a) has been shifted down by 0.15 with respect to the one 
above it, while, in figure 17 (b )  the separation between the spectra is 0.1. The arrows 
in these figures denote the locations of the peaks of the spectra, K ~ .  The spectra 
obtained at xl/xo = 0.10 show significant variation as a function of 9’. The changes 
seen here are much more marked than the corresponding changes observed in 
homogeneous turbulence (figure 8a,b)  because of the larger 2 and thus more 
vigorous mixing. The spectra clearly show two scales, one arising from flapping and 
the other from the jiggling motion (small excursions of high frequency) and the 
internal structure of the instantaneous plume. Close to  the source (x’/zo = 0.10, 
figure 17a), when the instantaneous plume is thin compared to the convective 
lengthscales (vp/(?)ht x 0.2, gP is the standard deviation of the Gaussian distribution 
representing the instantaneous plume), the flapping motion causes a hump to appear 
in the low wavenumber region of the spectra. However a t  the centre and edges of the 
plume the flapping spectrum peak shifts to  higher wavenumbers because of the rapid 
one-zero-one and zero-one-zero changes described in $5.1.2 and thus the low 
wavenumber hump is absent in the overall spectra in these regions, i.e. the flapping 
and jiggling (and internal structure) frequencies overlap. At x’/xo = 1.12 (figure 176), 
the width of the instantaneous plume is comparable to the convective lengthscales, 
thus the separation between the peaks caused by flapping and internal structure and 
jiggling is not large and these effects combine to give rise to single peaked spectra 
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FIGURE 17.  The normalized temperature spectra of figure 16 multiplied by K ~ .  The arrows indicate 
the location of the peaks. For clarity the origin of the ordinate has been shifted down by 0.15 
successively at (a)  x'/xo = 0.10 and by 0.1 at (0 )  x'/xo = 1.12. 

although there is some broadening (in this case at the edge of the plume) due to 
separation of the plume and flapping frequencies. (The effects described here should 
also be present for the dispersion of the line source in homogeneous turbulence. 
Figure 8 shows, however, that they are not so pronounced there.) Since the mean 
transverse velocity V is zero, on an average the instantaneous plume does not move 
from the origin, hence, in spite of the asymmetry of the velocity field, one can find 
corresponding points in the regions y' < 0 and y' > 0 where the normalized 
temperature spectra are nearly identical. 

The behaviour of the peak wavenumber of K ~ F @ ~ ( K ~ ) / @ ,  K ~ ,  across the plume, 
obtained from the spectra in figure 17 (a, b)  is shown in figure 18 (a) .  Also shown in the 
figure are corresponding peak wavenumbers, K;, of the spectra of the intermittency 
function, K,F~(K, ) .  As mentioned in $5.1.2,  the intermittency function was obtained 
using 4gn as the threshold. 

All the profiles (figure 18a) show a central peak with troughs on either side, the 
reasons being the same as those outlined in $5.1.2. The profiles of K~ and K; at 
x'/xo = 0.10 agree with each other in the sense that the peaks and troughs occur a t  
nearly the same lateral positions. However, other qualitative features are quite 
different. The profile of K; is nearly a square wave while that of K~ varies more 
smoothly with y'. It is unclear why this difference exists but we note that the same 
behaviour is seen for the 8.9: 1 bar grid (figure 18b) .  The peak of the intermittency 
function spectrum, K; lies well below K~ across the whole plume because a t  
x'/xo = 0.10, the convective lengthscales are much larger than the width of the 
instantaneous plume (ap/(G)it x 0.2), just as for the homogeneous velocity field case 
(figure 9a).  Although the turbulent lengthscales are different in the two homogeneous 
edges of the mixing layer, the change in the magnitude of K; is the same on either side 

1 pi M 91a 



S. Veeravalli and 2. Warhaft 60 

450 
400 
350 

,“ 300 
E 250 
‘u“ 200 
3 150 

100 
50 
0 

I 

v 

7 150 

I I I L I I  

400 

350 

300 

250 

200 

150 

100 

50 

-4  -3  - 2  - 1  0 1 2 3 -7-6-5-4-3-2-1 0 1 2 3 4 

Y * l 4  Y ’ l h  
FIGURE 18. The wavenumber at which the temperature spectra peak as a function of lateral 
distance across the plume. (a) 3.3:1 parallel bar grid. 0, unconditioned spectrum peak; A, 
conditioned spectrum peak at x’/z,, = 0.10, q, = 62.4 cm; *, unconditioned spectrum peak; 0,  
conditioned spectrum peak at x‘/xo = 1.12, x,, = 31.5 cm. (b)  8.9: 1 parallel’ bar grid, 0, 
unconditioned spectrum peak; A, conditioned spectrum peak at x’/zo = 0.10, zo = 62.4 cm. 

of y’ = 0. This indicates that the Lagrangian integral timescales are approximately 
equal on both sides of the mixing layer. It was shown in VW (figure lob) that the 
Eulerian timescale is approximately constant across the mixing layer also and thus 
the above result is consistent with the normal assumption (Tennekes & Lumley 1972) 
of the equality of the Eulerian and Lagrangian timescales. 

The qualitative agreement between K* and K; a t  d / x 0  = 1.12 (figure 18a) is very 
good. Here too, KI, lies below K ~ ,  however, the difference is not as large as that for 
d / x 0  = 0.10, because at x’/xo =\1.12, the instantaneous plume width is comparable 
to the convective lengthscales. 

Figure 18b shows profiles of Kp and K; a t  d / x 0  = 0.10 (xo = 62.4 cm), for the 8.9: 1 
bar grid. The similarity between the profile of K; here and that for the 3.3 1 1 bar grid 
at  d / x 0  = 0.10 is remarkable. It is interesting to note that the change in the 
magnitude of K; for these two grids at x/ /xo = 0.10, is also nearly identical because the 
Eulerian (and presumably the Lagrangian) integral timescales are approximately the 
same (table l ) ,  even though the length and velocity scales are different. The profile 
of Kp, however, is very different from the corresponding profile for the 3.3: 1 bar grid. 
The profile of K~ in figure 18(b) is highly asymmetric, with larger variations in the 
region of y’ > 0. This is because in the region of y’ < 0 the high frequency jiggling of 
the instantaneous plume caused by fluctuations originating from the large-scale side 
is vigorous and dominates over the flapping frequency thus maintaining a large value 
for K~ even at  the trough of K;. On the other hand, for y’ > 0, jiggling is caused by 
fluctuations from the small-scale side which are of a lower wavenumber (since the 
turbulent Reynolds number is much smaller here, table 1) and thus the behaviour of 
K; dominates the overall spectrum, causing K~ to dip down in the trough region of KI,. 
The ratio of the Kolmogorov timescales is approximately 14 and that of the 
Kolmogorov lengthscales is approximately 3.75. The corresponding ratios for the 
3.3: 1 grid are only 2.5 and 1.6 respectively, thus yielding a nearly symmetric K~ 

profile (figure 18a). 
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FIQURE 19. The temperature variance budget (equation (6)) for the line source; 3.3:l parallel 
bar grid. Labels and normalization are the same as for figure 11. (a) x‘/xo = 0.10, xo 62.4 cm, ( b )  
x ’ / z o  = 1.12, zo 31.5cm. 

5.2.3. The temperature variance budget 
Figure 19 (a,  b )  shows normalized temperature variance budgets obtained at  

d / x 0  = 0.10 (x, = 62.4 cm) and d / x 0  = 1.12 (xo = 31.5 cm) respectively, for the line 
source spreading in the shearless turbulence mixing layer generated by the 3.3: 1 bar 
grid. The ordinate has been non-dimensionalized by @Lax U/x and the abscissa by 1;. 
The procedure used in generating these budgets was identical to the one outlined in 
$5.1.3 above. The accuracy of this method is investigated in Appendix A, wherein the 
temperature variance profile at x’/xo = 1.21 has been evaluated using the variance 
profile and the advection term at x’/xo = 1.12; the agreement between the estimate 
for and the experimental measurements of the temperature variance a t  x‘/xo = 1.21 
(figure 22), is extremely good. 

These budgets exhibit some similarities with those presented in $5.1. Here also we 
find that at  the outer edges of the mean plume, the transport term does not drop to 
zero as quickly as the destruction and production terms and it is balanced by the 
advection term there. In  the central region, the transport and production terms are 
approximately in balance and the destruction term is balanced by advection. Note 
that the normalized magnitude of the destruction term nearly triples as d / x o  is 
increased from 0.10 (figure 19a) to 1.12 (figure 19b) and the advection term increases 
significantly also. 

However, unlike the budgets presented in figure 11 (a ,  b )  the profiles here are highly 
asymmetric about the origin yo, at both values of x’/zo. The positive peak of the 
transport term for y’ > 0 is three times as large as that attained when y’ < 0 at 
x’/xo = 0.10 and nearly five times as large at  x’/xo = 1.12. Similar ratios for the 
production term are 4 and 3 respectively. It is interesting to note that for 
d / x o  = 0.10, while the ratio of the positive peaks of the transport term is 
approximately 3, the integral of the transport term over the region where it is 
positive and y’ > 0 is only 1.5 times as large as the corresponding (positive) integral 
evaluated for y’ < 0, owing to the much larger spread of the mean plume for y’ < 0. 

3-2 
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FIGURE 20. The line source temperature variance budget for the 8.9: 1 parallel bar grid and 3: 1 
perforated plate. Labels and normalization are the same as for figure 1 1 .  (a) 8.9: 1 parallel bar 
grid, (b) 3: 1 perforated plate, both at x' /xo  = 0.10, zo = 62.4 cm. 

A similar calculation a t  x'/xo = 1.12 yields a ratio of 4. For the production term the 
corresponding ratios are 1.9 a t  x'/xo = 0.10 and 2.5 a t  x'/xo = 1.12. 

The production term in figure 19(a) is slightly negative in the neighbourhood of 
y' = 0, indicating a region of counter-gradient flux. Although this region is small, i t  is 
statistically significant since the points where the & and aS/ay profiles change sign 
can be determined to within 0.5 mm while the region of counter gradient flux is three 
times as large. As shown below (figure 20), the budgets for the 8.9: 1 bar grid and the 
3 : 1 perforated plate, corroborate the presence of counter-gradient flux. At x'/xo = 
1.12 (figure 196) this region of negative production almost disappears and 
presumably, further downstream, when turbulent-diffusion is the dominant 
spreading mechanism, counter-gradient flux would be absent together. In  Appendix 
B, using a simple flapping-plume model it is shown that such a region of negative 
production is necessarily present in the turbulent-convective regime of a line source 
spreading in inhomogeneous turbulence. 

Figure 20 (a,  6 )  shows budgets for the 8.9 : 1 bar grid and the 3 : 1 perforated plate 
respectively, at x'/xo = 0.10 (xo = 62.4 em). The qualitative similarity between these 
budgets and that in figure 19(a) is striking. As expected, the asymmetry of the 
profiles in figure 20(a)  is much larger compared with that of figure 19(a). These 
budgets, especially that of the 8.9: 1 bar grid, also show a region of counter-gradient 
flux in the vicinity of y' = 0. 

5.2.4. The heat flux budget 

The evolution equation for the principal component of the heat flux vector is given 
in $2 (equation (7) ) .  Figure 21 shows a balance between the various terms described 
in equation (7) ,  for the 3.3: 1 bar grid a t  x'/xo = 1.12. The transport and production 
terms were determined in a manner similar to the one used in determining the 
variance budgets. In  order to  determine &%/ax and hence the advection term, two 
sets of measurements of % were made approximately one mesh length apart in the 
longitudinal direction. The locations were x;/xo = 1.12 (xl = 21.2M2) and xi/.,, = 
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1.21 (x2 = 22.1M2). Smooth curves were faired through the data points using 
interpolating splines and the gradient was determined using a linear fit. The pressure 
term could not be measured and was obtained from the balance of the other terms. 
Before discussing the budget it should be noted that the advection term-so estimated, 
is likely to possess large errors, partly because it is determined from a small difference 
between two large values and partly because of errors in probe position. If we assume 
that the fractional error in 8;; is approximately 3 %, then the error in a&/ax could 
be as large as 50%. Secondly, because of the large gradients in the 8v profiles (figure 
15c) a lateral shift of 0.5 mm in one of the profiles could cause the zero crossings of 
the advection term to shift by as much as 5 mm (0.251;), and change the magnitude 
of its peaks by as much as 50 YO. Thus only qualitative information can be extracted 
from figure 21. 

Given the qualifications mentioned above, the 8;; budget indicates that advection 
and transport are approximately in balance across the whole plume. Consequently, 
the pressure term is responsible for the destruction of & and approximately balances 
the production term. This is consistent with the results of Wyngaard & Weil (1990) 
where it is shown that a simple eddy diffusivity model applied to the & and 8v2 
equations, yields the balance described above. 

6. Conclusions 
We have shown that thermal dispersion from a line source in the shearless 

turbulence mixing layer is highly asymmetrical because of the variation of turbulence 
intensity throughout the layer. The measurements were carried out with the line 
source placed at approximately the inflection point of the kinetic energy profile but 
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the same qualitative features would be observed if the source were placed off centre 
although the effects of the large (or small) scale would be more pronounced initially 
depending on whether the source were placed closer to the high (or low) turbulence 
intensity side of the mixing layer. The line source was placed a t  two downstream 
locations; 31.5 em and 62.4 cm from the grid and the measurements were carried out 
in the turbulent convective region where both flapping and fine-scale internal 
structure of the plume are important in the mixing process. We have examined 
spectra and thermal budgets to  highlight these processes and the results are 
compared with new measurements of spectra and budgets for a line source in 
homogeneous decaying grid turbulence. Special care has been taken to document the 
velocity field in order to aid modelling of the dispersion process. Thus the velocity 
field on both sides of the mixing layer has been completely specified (table 1 and VW) 
and the p.d.f. as well as the variance and skewness profiles a t  the approximate 
location of the second line source (62.4 em) is given (figures 3 and 4). Furthermore, 
the second, third and fourth moment profiles a t  both locations of the line source 
studied here can be inferred from the scaled data in figures 9, 11 and 12 of VW. Our 
main findings are as follows. 

In  the convective range the mean temperature profiles are strongly skewed with 
a long tail extending into the low-turbulence side of the mixing layer (figure 12). Here 
the median and peak of the temperature distribution are deflected towards the large- 
scale turbulence region. As the plume evolves the profiles tend to become more 
symmetric as the internal structure of the instantaneous plume develops and 
becomes as significant as flapping motion in determining the overall plume structure”. 
Our measurements only extend to the end of the convective range but the results 
suggest (figure 13) that  in the diffusive range the mean temperature distribution 
would again become asymmetric with the longer tail now extending into the high- 
turbulence side of the mixing layer. Here turbulent diffusion (rather than flapping) 
assumes the dominant role and thus mixing will be more efficient in the high- 
turbulence side where the eddy diffusivity is larger. The temperature variance 
profiles (figure 14) are also asymmetric in the convective region. Just  like the mean 
profiles, they tend to become more symmetric as the flow evolves, however as the 
diffusive range is approached an asymmetric double peak is observed. (In 
homogeneous grid turbulence a symmetric double peak is observed here (Warhaft 
1984).) The ratio of the r.m.s. to mean centreline temperature rises to a maximum 
value of 1.4 close to the source and then declines to a value of approximately 1 a t  the 
end of the convective region; a result similar to  the homogeneous case. 

I n  order to summaize the temperature spectra and budget measurements we will 
first describe measurements of these quantities for the line source in decaying 
homogeneous grid turbulence. We note that these statistics have not been 
investigated previously for the homogeneous case. These will then be contrasted with 
the thermal field in the inhomogeneous mixing layer. 

6.1. Homogeneous grid turbulence 

Temperature spectra were calculated both from the raw time series (unconditioned 
spectrum) and the intermittency function (conditioned spectra). As the probe was 
traversed laterally across the plume the peaks of these spectra showed a characteristic 
W shape (figure 9a)  with high wavenumber peaks at the centre and edge of the plume 
(where the time series showed the probe was nearly all the time in (or out) of the 
plume, interspersed with short blips) and low wavenumber peaks in the intermediate 
region where the probe spent approximately equal times inside and outside the 
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plume. The peaks of the spectra of the intermittency function (which highlight the 
flapping) had a similar form to the unconditioned spectra. However as the diffusive 
region was approached the peaks of the unconditioned spectra tended to show 
weaker wavenumber dependence in the central region of the plume since internal 
structure becomes more pronounced than flapping here (figure 9a).  For both the 
conditioned and unconditioned time series the spectra were not self similar across the 
plume. 

The temperature variance budget showed that production and transport have 
equal magnitude (and opposite sign) in the centre of the plume while advection 
balanced destruction (figure 11). Near the edge of the plume production and 
destruction approached zero rapidly and transport and advection were in balance. As 
the plume evolved the relative importance of these terms changed as the fine 
structure within the plume developed. 

6.2. The inhomogeneous mixing layer 
Here, too, the peak of the unconditioned and conditioned spectra showed a W shape 
as the plume was traversed (figure 18), however the trough was narrower on the high- 
turbulence side of the plume and the graphs of the conditioned and unconditioned 
spectral peaks were less congruent. The variation in wavenumber of the spectral peak 
was the same on the high- and low-turbulence sides of the plume for the intermittency 
spectrum but for the unconditioned spectrum there was less variation in the 
wavenumber peak on the low-turbulence side of the mixing layer than on the high- 
turbulence side, particularly for the 8.9: 1 grid (figure 18a, b ) .  This is understood by 
noting that the conditioned or intermittency spectra are determined largely by the 
turbulence integral timescale which remains approximately constant across the 
mixing layer (VW, figure lob) while the unconditioned spectra are determined by a 
combination of large and small scales, the latter determining the fine-scale structure 
of the plume. The size of the small scales (Kolmogorov scale) varies across the mixing 
layer thereby affecting the fine structure of the plume and the form of the 
unconditioned spectrum from one side to the other. 

As for the homogeneous case the temperature variance budget shows that 
advection balances transport in. the outer edges of the plume where destruction and 
production are approximately zero. In the central region advection and dissipation 
are in rough balance (figure 18). However, the profiles of the budgets are highly 
asymmetric. A particularly interesting finding is that there is a significant region of 
counter gradient heat flux (negative production) in the central region of the mean 
plume. Using a simple flapping model it is shown that this is a consequence of the 
asymmetry of the velocity p.d.f. Presumably such regions should occur in the outer 
region of a turbulent boundary layer mixing with free-stream turbulence. The 
transverse (&) heat flux budget (not measured for the homogeneous case) also 
showed strong asymmetry. Here advection and transport were in approximate 
balance across the whole plume suggesting that the pressure term is in balance with 
production but this budget is less reliable than that for the temperature variance. 

Finally we have shown that the measurements of the inhomogeneous plume, most 
extensively done using the 3.3: 1 parallel bar grid, when contrasted with measure- 
ments done using the 8.9: 1 grid and the perforated plate, show expected variations, 
with larger asymmetries in the plume occurring for the larger turbulence scale ratios 
across the mixing layer (figures 19 and 20). 
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FIGURE 22. Temperature variance at x’/xo = 1.21, x,, = 31.5 calculated from 
equation (A 1) (solid line) and measured (square symbols). 3.3: 1 parallel bar grid. 
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Appendix A 
Figure 22 shows an attempt to ascertain the validity of the curve fitting and 

discrete differentiation procedures used in obtaining the scalar variance budgets 
shown in figures 11 (a, b) ,  19(a, b ) ,  20(a,  b) .  The temperature variance profile for the 
3.3: 1 bar grid, at x i / x o  = 1.21 was evaluated from that at x; /xo  = 1.12 as, 

where, the scalar variance gradient, aplax’, was determined from the advection 
term at  x; /xo  = 1.12, which in turn was estimated from the variance budget (figure 
19a). The temperature variance calculated using equation (A I) ,  is represented by the 
solid line in figure 22, while, the symbols indicate experimental points obtained at  
xi/xo = 1.12. We note that the agreement between the curve and the data points is 
extremely good. 

Appendix B 
The flapping plume model was first proposed by Taylor (1921) to describe the 

spreading of scalar contaminants close to the source. It was refined by Townsend 
(1954) and Saffman (1960). Here, we will be using the form presented in Lumley & 
Van Cruyningen (1985), since it enables one to  calculate entire moment profiles, 
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instead of just the mean spreading rates. In the analysis that follows, the 
downstream distance from the source is fixed (say x’). 

Let g(y’ - Y )  represent the temperature distribution in the instantaneous plume 
centred at  Y, and let f(Y)dY be the probability of finding the centre in the interval 
[Y, Y + dY), then the mean temperature distribution ( 6 )  (angle brackets will be used 
to denote mean quantities here) is given by, 

Q, 

<@(Y’)) = S_,g(Y’- Y)f(Y)dY. 

Similarly, moments of the fluctuating temperature 8 may be obtained as, 

In homogeneous turbulence both f and g may be well approximated by Gaussian 
distributions. In  inhomogeneous turbulence, the instantaneous temperature 
distribution initially remains Gaussian (since the source size is smaller than the 
Kolmogorov lengthscale and molecular diffusion is principally responsible for the 
spreading of the instantaneous plume close to the source), however, f is no longer a 
Gaussian distribution. Close to the source it is reasonable to assume that the 
Lagrangian velocity auto-correlation does not depart significantly from unity, thus, 

f(Y) = f v ( W ’ ,  (B 4) 

where,f,(w’) is the p.d.f. of w fluctuations at the source, t’ is the mean convection time 
x‘/U and v’ w Ylt’. 

Figure 23 shows fv(w’) a t  x = 21.2M2 and y’ = 0 for the 3.3: 1 bar grid. The profile 
is asymmetric and difficult to represent analytically. Let us assume that the p.d.f. 
can be represented as the sum of two half Gaussian distributions, one corresponding 
to each velocity scale, matched at  the peak. As shown in figure 23, this is a good 
assumption to the right of the peak but not so good to the left of it. However, in the 
discussion to follow, it is the asymmetry of the p.d.f. about the peak that is of 
relevance, not the exact form, thus for analytic simplicity let us assume the 
following : 

The origin of Y coincides with the source location yo. yp is the location of the peak 
of the distribution and is given by, 

yp = 2(a,-a,)/(2n)t, (B 6) 

and uI and a2 are given by 
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FIQURE 23. A Gaussian fit to each side of the p.d.f. of the data of figure 4(a).  

Let the standard deviation of the instantaneous temperature profile be up and let the 
peak temperature be O,, then, 

g’(y’ - Y )  = 0, exp [ - (Y2;npI 

If we assume further, that up 4 u1 and up 4 uz, then (@), (ev> and - (ev>a(@>/ay 
can be easily evaluated as, 

and 

thus, 
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For the flows considered here re > g1 (the large-scale homogeneous region 
corresponds to y’+ 00) hence y, > 0 (see equation (B 6) ) .  Equation (B 11) then 
indicates that there is a region of negative production when 0 < y’ < y,. Note 
that this result is independent of the actual form off(Y) since ( e v )  changes sign at 
y‘ = 0, while a(@)/ay changes sign at y’ = yp thus yielding a region of negative 
production (or counter-gradient flux) for 0 < y’ < yp. 
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